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* Dimension of the domain
* Topology of the domain
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* Dimension of the domain
* Topology of the domain

* Local topology of the discretization

— Adapted algorithms
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What do we mean by domain?

» Continuous discrete representation of a space X
*Finite set of samples
» Positional information in an embedding space [K
* Attributes
*Connectivity of the samples
* Continuity of the domain
» Cellular elements (dimension of X)
*Cell interpolation scheme
* Continuity of the attributes
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Example

* Domain
* Embedding space

* Cellular elements
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Example

* Domain
* 2-manifold S

* Embedding space
o RS

* Cellular elements
* Triangles
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* d-manifold with boundary
* Topological space such that:

* Any point has a neighborhood
homeomorphic to a neighborhood of R

or its half space

* Boundary: closed (d-1)-manifold
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Domains of interest: Manifolds

* Tangent space
*Localized Euclidean approximation
* Localized Euclidean geometry
— Inner products
— Distances, angles, areas, ...
— Gradient, Laplace operator, efc.

* Discrete surface in R
* Triangular (planar) cells
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* Boundary?
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Summary

* Euclidean representations
* Non-euclidean representations

* Dimension-specific data-structures
* Dimension-specific interpolants
* Implementation examples
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Euclidean spaces

* Named after Greek mathematician Euclid
* 325 BC, 265 BC

* "Elements” (300 BC)
*First systematic math book
* Definitions, axioms, demonstrations
* 5 axioms (first tome)
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* Given an origin ' '
(0) (1)
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Euclidean spaces on a computer

» Given an origin PO
c0=1(0,0,...,0) € R" oo
* And an orthonormal basis (0,1)
vy = (1,0,0,...,0) € R"
* vy = (0,1,0,...,0) € R" L’

(0,0) (1,0)
‘?)3:(0,0,1,...,0)6 R
® o (01110)

°*v, =(0,0,0,...,1) e R"
* Points can be identified uniquely in that space (1,0,0)
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* Direct product of closed unit intervals (OI, (Ll,
’ [071] X [071] X X [071]
* By construction (0,1)
* Unit translations along the vectors of the .
orthonormal basis (0.0) (1.0)

* Covering a bounded, compact region of R™

* Unit cell

(0,0,1)
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* Given a unit cell of R"

* What's the minimum number of samples

necessary to describe its convex hull?
. T
* Arbitrary closed and bounded subsets of
* Collection of unit cells

—
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(0,1)
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Euclidean spaces on a computer

* Given a unit cell of R" (ol) (Il)
* What's the minimum number of samples
necessary to describe its convex hull? (0,1)
||
* Arbitrary closed and bounded subsets of R" (0.0) (10)

* Collection of unit cells
* By construction

* Unit translations on the unit vectors of the
orthonormal basis

(0,0,1)
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Euclidean spaces on a computer

* Notion of regular grid ¢
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* Notion of regular grid ¢
* Finite collection of unit cells

* Entirely covering the direct product of closed
Intervals, such that
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Euclidean spaces on a computer

* Notion of regular grid ¢ <<|»_<H>
* Finite collection of unit cells
* Entirely covering the direct product of closed O
Intervals, such that 0,1 .
'[0, ]Cl] X [0, kQ] X o+ X [0, kn]
. kz E N (0,0) (1,0) (2,0)

(0,2,0) (1,2,0) (2,2,0)

*How many unit cells in |0, k1| x [0, ks| x [0, k3| ?
e k1.ko.k3

*How many samples? (k1 +1).(k2 +1).(ks + 1)

(0,2,1) 1)
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(0,0,1) (1,0,1) (2,0,1)
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Regular grids of [R
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* A one-dimensional structure

* To store values T (°)

* Scalars, vectors, tensors...
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* Arrays :)
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* Problem

f(p) = \/pz +py
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Regular grids of R"

* Same problem
* Computer memory is one-dimensional!
*Same solutions
* One dimension at a time
* Peano's curves
* Hilbert's curves, ...
* Lebesgue's curves (z-order)
* Generalizes to higher dimensions
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Embedding functions

* Problem

*What if we want to adapt the sampling to
the geometry of the data?

* Embedding functions
ce: G — R"
* Attributes attached to the grid
* Non uniform sampling
* Rectilinear grid

[Wikipedia]
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Euclidean spaces on a computer

* Notion of regular grid ¢
* Set of vertices (samples) inR"
* With embedding functions toR"
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* Notion of regular grid ¢
* Set of vertices (samples) inR"
* With embedding functions toR"
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* Notion of regular grid ¢
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Euclidean spaces on a computer

* Notion of regular grid ¢
* Set of vertices (samples) inR"
* With embedding functions toR"
* Connectivity
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——

(0) (1) (2)

(0,2) (1,2) (2,2)

(0,1) (2,1)

(0,0) (1,0) (2,0)

(0,2,0) (1,2,0) (2,2,0)

(0,2,1) 1)

(2,0,0)

(0,0,1) (1,0,1) (2,0,1)
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* Notion of regular grid ¢
* Set of vertices (samples) inR"
* With embedding functions toR"
* Connectivity
* Unit cells (pixels, voxels)
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*What's missing?
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Euclidean spaces on a computer

* Notion of regular grid ¢
* Set of vertices (samples) inR"
* With embedding functions toR"
* Connectivity
* Unit cells (pixels, voxels)
* Implicitly encoded by the samples (space fill)
*What's missing?
* The interpolation scheme
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Interpolants for regular grids

* Given values on the vertices f ) [O, 24] — R

* How can we deduce the values
within the unit cells?

* For regular grids of R T

*1:]0,1] — ]0,1] 20

* limg—o I(x) =0

e limg—1 I(x) =1 o
|

» Vx € |a,b
) =Ho——) (f(0) = f(a)) + fla)

t (h)
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Interpolants for regular grids

* Interpolation function
* Given with the data
*Can be defined per unit cell
* Computed on demand

* Examples I :

0,1] — 10,1]
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» Interpolation function f : [07 24] —> R

* Given with the data
*Can be defined per unit cell

* Computed on demand e
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* Plecewise constant
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* Given with the data
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» Interpolation function f : [O’ 24] —> R

* Given with the data
*Can be defined per unit cell
* Computed on demand
*Examples I: [0,1] — |0, 1|
* Plecewise constant
—(x) =0(x — 1)
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Interpolants for regular grids

» Interpolation function f : [O’ 24] —> R

* Given with the data
*Can be defined per unit cell
* Computed on demand
*Examples I: [0,1] — |0, 1|
* Plecewise constant
—(x) =d0(x —1)
* Plecewise linear
—(x) ==
* Plecewise polynomials, etc.

T (°)

t (h)




Interpolants for regular grids

» Interpolation function f : [O’ 24] —> R

* Given with the data
*Can be defined per unit cell
* Computed on demand
*Examples I: [0,1] — |0, 1|
* Plecewise constant
—(x) =d0(x —1)
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