Date : Janvier 2006
Articles d'Annick Valibouze dans la base de données mathscinet

Revenir sur ma page d'accueil
Revenir sur ma page Publications


Vous trouverez sur cette page mes commentaires ainsi que ceux des rapporteurs de l'Ame. Math. Soc.
Attention : Tous mes articles ne sont pas rapportés par l'AMS. Donc certains de mes articles peuvent être manquants sur cette page.
Je n'ai pas encore eu le temps de traduire en francais les rapports anglais de l'AMS. Veuillez me le pardonner, svp
Articles manquants :
2005
Classes Doubles, Idéaux de Galois et Résolvantes,
à paraître dans la Revue Roumaine de Mathématiques Pures et Appliquées (2005).
2003
Calcul efficace de corps de décomposition,
Avec S. Orange, G. Renault, Rapport LIP6 2003/005. en révision à Experimental Mathematics.
[Présenté par G. Renault aux Journées nationales de Calcul Formel (Luminy, Janvier 2003)]
[Version préliminaire LIP6 2003/005]
1989
Symbolic computation with symmetric polynomials, an extension to Macsyma .
Computers and Mathematics (MIT, USA, June 13-17, 1989), Springer-Verlag, New York Berlin, 308-320.
Pour en savoir plus sur mon module SYM et sur Maxima, Revenir sur ma page d'accueil
[Version Préliminaire : Notes Informelles de Calcul Formel, Ecole Polytechnique]
1989
Résolvantes et fonctions symétriques.
Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, ISSAC`89 (Portland, Oregon). ACM Press, 390-399 (Full paper).

Next Item
MR2172144
Orange, Sébastien (F-PARIS6-IP6); Renault, Guenaël(F-PARIS6-IP6)Valibouze, Annick(F-PARIS6-IP6)
Note sur les relations entre les racines d'un polynôme réductible. (French. English, French summary) [Note on the relations between the roots of an irreducible polynomial]
Theor. Inform. Appl. 39 (2005), no. 4, 651--659.
12Fxx
[Versions préliminaires : Prépublication 99-03 de l'Equipe MAX de l'Ecole Polytechnique et LIP6 2003/004 ]

{A review for this item is in process.}


Next Item
MR2141285
Valibouze, Annick(F-PARIS6)
Dépendance algébrique des zéros de polynômes et groupes de Galois. (French. English summary) [Algebraic dependence of the zeros of polynomials and Galois groups]
Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 48(96) (2005), no. 1, 73--96.
12F10
[Version préliminaire LIP6 2003/006]
Commentaire d' Annick Valibouze

Cet article généralise l'algorithme GaloisIdéal (i.e. voir rapport interne LIP6 1997/014 et l'article MR1732887 issus de mon cours de Théorie de Galois, DEA 95/96) aux injecteurs qui ne sont pas des groupes.
Pour y parvenir, il généralise également :
  • les matrices de groupes et de partitions (i.e. l' article MR1457831 avec J.-M. Arnaudiès et l'article MR1448185 )
  • l'algorithme de calcul de résolvantes relatives qui répond au théorème de Galois pour les idéaux de Galois purs (voir MR1800031 avec P. Aubry).
  • L'article est enrichi d'un exemple déroulé tout au long de l'article.
    Il est bien moins fondateur et moins techniquement difficile que celui contenant l'algorithme GaloisIdéal mais il complète parfaitement les travaux antérieurs.

    The paper proposes an algorithm to determine the Galois group of a degree $n$ polynomial $f$ and its action on the roots of $f$. It gives an improvement of a previous paper of the author \ref[Bull. Belg. Math. Soc. Simon Stevin 6 (1999), no. 4, 507--535; MR1732887 (2001b:12005)]: it is no longer necessary for the object called injector by the author to be a subgroup of the permutation group $S_n$. The reader might regret the number of misprints in the paper.

    Reviewed by Jean Cougnard



    Previous Item

    Next Item
    MR2104299 (2005h:13036)
    Abdeljaouad-Tej, I; Orange, S.(F-PARIS6-IP6); Renault, G.(F-PARIS6-IP6); Valibouze, A.(F-PARIS6-IP6)
    Computation of the decomposition group of a triangular ideal. (English. English summary)
    Appl. Algebra Engrg. Comm. Comput. 15 (2004), no. 3-4, 279--294.
    13F20
    [Ce travail reprend et prolonge une partie de LIP6 2000/25 avec I.Abdeljaouad ; également MAX 2000.08 "The Hacque method and the complete GI-method for computing the Galois goup" Conférence AAECC'13 (Novembre 1999).>]

    Let $R=K[X_1,X_2,\dots,X_n]$ be a polynomial ring over a perfect field $K$. The symmetric group $S_n$ acts naturally on this ring. Let $I$ be an ideal of this ring generated by a triangular set of $n$ polynomials of $R$. The stabilizer ${\rm Dec}(I)$ of $I$ is called the decomposition group.

    In this paper, the authors use the backtracking technique of G. Butler \ref[ Fundamental algorithms for permutation groups, Lecture Notes in Comput. Sci., 559, Springer, Berlin, 1991; MR1225579 (94d:68049)] to develop algorithms 2.1 and 3.8, utilizing the MAGMA algebra system software, to study the decomposition group of ${\rm Dec}(I)$.

    In Section 3, it is shown that if ${\rm Dec}(I)=S_n$, algorithm 2.1 computes only $n(n+1)$ membership tests in order to determine a generating set composed of $n-1$ transpositions. In Section 4, for a triangular ideal $I$, computation of ${\rm Dec}(I)$ with algorithm 3.8 leads to the following cases: \roster \item A backtrack appears and $I$ is not pure Galois. \item $I$ is pure Galois if and only if ${\rm Card}({\rm Dec}(I))={\rm cardinal}$ of the variety of $I$. \endroster Section 5 is devoted to comparison of various algorithms.

    Reviewed by R. K. Markanda

    Previous Item

    Next Item
    MR1800031 (2002a:12004)
    Aubry, Philippe(F-PARIS6-IP6);Valibouze, Annick(F-PARIS6-IP6)
    Using Galois ideals for computing relative resolvents. (English. English summary)
    Algorithmic methods in Galois theory.
    J. Symbolic Comput. 30 (2000), no. 6, 635--651.
    12F10-- --(12Y05)
    [Versions préliminaires : LIP6 1998/004 et MAX 98-04 ]
    Commentaire d'Annick Valibouze

    Lorsqu'un polynôme est symétrique en les racines d'un polynôme d'une variable F, le théorème fondamental des fonctions symétriques nous assure qu'il s'exprime en les coefficients de F. L'effectivité de ce théorème existe depuis bien longtemps(Formule de Waring avec réécriture, Lagrange avec le résultant, Cauchy avec ses modules, ...) mais avec des problèmes de complexité. Dans mes travaux antérieurs, inclus dans le module SYM, et dans d'autres (voir par exemple, Thèse de L.E. Soicher pour le calcul de résolvantes absolues linéaires) ces problèmes de complexité sont contournés. C'est ce théorème sur lequel s'appuie le calcul des résolvantes dites absolues.
    Lorsque le groupe symétrique est remplacé par un groupe contenant le groupe de Galois (et plus généralement par l'injecteur d'un idéal de Galois), les coefficients appartiennent encore au corps de base ; c'est le fameux théorème de Galois qui s'applique. Mais
    comment rendre effectif le théorème de Galois ?,
    efficacement sans passer par des approximations numériques (R.P. Stauduhar, 1973 ou Thèse d'Yves Eichenlaub, Bordeaux-France, fonction galois dans GP-Paris). Dans le rapport LITP 93.61 "Résolvantes de Lagrange" (voir sa version électronique dans la prépublication 96-10: de l'équipe MAX ) une méthode est proposée en passant par des éléments primitifs contruits inductivement. Le présent article présente une solution élégante et efficace utilisant les idéaux de Galois.
    Cet article se borne aux injecteurs d'idéaux de Galois purs (i.e. aux groupes). Le résultat est généralisé à tous les injecteurs dans MR214128 .
    Cet article comporte deux autres résultats fondamentaux :
  • Tout idéal de Galois pur est triangulaire : la base de Groebner réduite est formée de n=deg(F) polynômes
    f i (x 1 ,...,x i ) ,
    séparable en x i de monôme initial x i m i où le produit m 1 m 2 ...m n s'identifie à l'ordre du groupe injecteur.
  • il prédit les degrés mi des monômes initiaux de tout idéal de Galois triangulaire par la simple connaissance de son injecteur. En 1999, ce résultat permis à K. Yokoyama (communication privée) de proposer un algorithme p-adique calculant les idéaux de Galois (i.e. leur base de Groebner) et, en particulier, les maximaux M définissant le corps des racines K_F du polynôme F :
    K_F est isomorphe à K[x1,x2,...,xn]/M

  • Let $f\in k[X]$ be a separable polynomial of degree $n$, where $k$ is a perfect field. Let $\overline k$ be the algebraic closure of $k$ and $\Omega=(\alpha _1 ,\dots, \alpha _n)\in{\overline k}{}^n$, where $\alpha _1 , \dots, \alpha _n$ are the distinct roots of $f$. If $L$ is a subgroup of the symmetric group $\Sigma _n$, the authors define the Galois $(L,\Omega)$-ideal $I_\Omega ^L $ \rm as $I_\Omega ^L =\scr{J}(V)$, where $V=\{\sigma\Omega| \sigma\in L\}$ and $\scr{J}$$(V)=\{f\in k[ x_1,\dots,x_n ]| f(\beta)=0$, for all $\beta\in V\}$, a radical ideal in $k[x_1,\dots,x_n]$. Proposition 5.2 shows that $V$ is an "equiprojectable variety" in ${\overline k}{}^n$\rm (a geometric concept introduced in the paper which means that for all $1\leq i\leq n$, and for all $M\in \pi _i(V)$, card$(\pi _i^{-1}(M) \cap V)$ is finite and does not depend on $M$; $\pi _i :V \to \overline k{}^i $ sends $(a_1 ,\dots, a _n)$ to $(a_1 ,\dots, a _i)$). A zero-dimensional variety $U$ is equiprojectable if and only if $\scr{J}$$(U)$ is an ideal generated by a separable triangular set of polynomials \rm (Theorem 4.5). It follows (Theorem 5.3) that the ideal $I_\Omega ^L $ has a Gröbner basis consisiting of a separable triangular set of polynomials. For an ideal $I$ of this type, an algorithm for computing the characteristic polynomial of the multiplication by a polynomial $\Theta$ inside $k[x_1,\dots,x_n]/I$ is given in Section 6. This algorithm yields a method for computing relative resolvents in Galois theory, illustrated by the case of an irreducible polynomial of degree 8 over $\Bbb{Q}$. A discussion of various implementation and optimization issues is included.

    {For the entire collection see MR1800030 (2001f:12001).}

    Reviewed by Aurelian Claudiu Volf

    Previous Item


    Next Item
    MR1737231 (2001e:12002)
    Rennert, Nicolas(F-PARIS6-IP6); Valibouze, Annick(F-PARIS6-IP6)
    Calcul de résolvantes avec les modules de Cauchy (French. English, French summary) [Computing resolvents using Cauchy modules]
    Experiment. Math. 8 (1999), no. 4, 351--366.
    12F10
    [Ce travail reprend et complète le rapport IBP-LITP 95-02 , idem à MAX 96-11 téléchargeable]
    [Versions préliminaires : MAX 98-06 ]

    The authors give a new and efficient algorithm to compute some characteristic polynomials of endomorphisms using Cauchy modules. This algorithm is used for the computation of absolute resolvents and multi-resolvents which are essential in the theory of fields and in the constructive Galois theory.

    Reducing the time of computation of a resolvent improves the computation of the Galois group of a polynomial. This work presents a simple and quick algorithm (Theorem 4.7) which computes, without parasite factors, the characteristic polynomial of a multiplicative endomorphism associated with one given invariant. This characteristic polynomial is an exponent of the resolvent for the same invariant. The problem of the parasite factors is then solved, the parasite exponents; only the problem of the parasite exponents remains.

    $§1$ and $§2$ present the introduction and give the notations. $§3$ recalls other results from the second author with or without J.-M. Arnaudiès.

    In $§4$ the study of the characteristic polynomial in the algebra of universal decomposition reminds one of the methods of Arnaudiès (1992), J.-L. Lagrange (1770) and A. Cauchy (1882). The Cauchy modules, associated with the polynomial $f$, are $n$ polynomials if the degree of $f$ is $n$. One main result is (Theorem 4.7) an explicit algorithm giving the characteristic polynomial. And $(§5)$ if $f$ is separable, the Cauchy modules form a reduced Gröbner basis of $f$ from the ideal of the symmetric relations. The authors generalise this result to the case when $f$ is reducible.

    In $§6$, devoted to the absolute resolvent (another main result), one uses the method of F. Lebohey (1997) for giving a computation algorithm of an exponent of the resolvent and next an algorithm of the resolvent with reductions. In $§7$ one finds the algorithm for an absolute multi-resolvent of $p$ polynomials.

    At last $§8$ and $§9$ give implementation methods of different algorithms (with the system of the axiom formal calculus) and allow one to compare the efficiency.

    This work is historically interesting, gives explicit algorithms and is relatively complete.

    ReviewedbyJean-Daniel Thérond

    Previous Item

    Next Item
    MR1732887 (2001b:12005)
    Valibouze, Annick(F-PARIS6-IP6)
    Étude des relations algébriques entre les racines d'un polynôme d'une variable. (French. English, French summary) [Study of the algebraic relations among the roots of a univariate polynomial]
    Bull. Belg. Math. Soc. Simon Stevin 6 (1999), no. 4, 507--535.
    12F10-- --(12Y05)
    [Version préliminaire : LIP6 1997/014 et MAX 98-03 ]

    Commentaire d'Annick Valibouze

    Cet article est issu de mon cours de Théorie de Galois, DEA ITCP 95/96, Marrakech (Maroc), Octobre 1996, Pise (Italie), Mai 1997. C'est le travail fondateur sur les idéaux de Galois. Il contient entre autre le résultat fondamental décrit dans mon commentaire de MR1457831 .

    The paper contains a detailed study of the relations among the roots of a polynomial by considering particular ideals containing the ideal consisting of all symmetric relations of the roots and contained in the (maximal) ideal of all relations between the roots. The main results of the paper are a correspondence between the above ideals and certain sets of permutations as well as an algorithm allowing the construction of a system of generators of the ideal of relations among the roots of the polynomial. The algorithm is illustrated by an explicit numerical example.

    Reviewed by Chr. U. Jensen

    Previous Item

    Next Item
    MR1457831 (98f:12004)
    Arnaudiès, Jean-Marie(F-PARIS6-MI) ; Valibouze, Annick(F-PARIS6-C)
    Lagrange Resolvents. (English. English summary)
    Algorithms for algebra (Eindhoven, 1996).
    J. Pure Appl. Algebra 117/118 (1997), 23--40.
    12F10
    [Version Préliminaire plus complète : Rapport LITP 93.61 "Résolvantes de Lagrange" ; version téléchargeable, Notes Informelles de Calcul Formel, Ecole Polytechnique]
    Commentaire d' Annick Valibouze

    Le rapport interne LITP 93.61 (1993) comporte entre autre un résultat fondamental :
    Il est possible de calculer le corps des racines d'un polynôme d'une variable F (i.e. un idéal de Galois maximal M) en rajoutant un unique polynôme à l'idéal des relations symétriques I_s (et je rajoute ici : donc, trivialement, à tout idéal de Galois le contenant). C'est l'analogue pour l'idéal maximal M du fameux théorème de l'élement primitif de J.L. Lagrange pour le corps des racines K_F. Si un P(x) est le polynôme minimal d'un élément primitif v de K_F (s'exprimant comme un polynôme V en les racines du polynôme F) alors
    M = I_s + [P(V)]
    Evidemment, ce calcul comporte en lui toute la complexité du théorème de l'élément primitif (i.e. calcul et factorisation d'une résolvante absolue de degré n!) mais aussi celle du calcul de la Base de Groebner de M. Mais, comme je l'explique ci-après, l'idée essentielle d'une construction réaliste de M réside dans ce résultat.
    En 1996, j'ai généralisé ce résultat (voir MR1732887 et MR2141285 ) à tous les idéaux de Galois en le rendant effectif avec les facteurs des résolvantes :
    Soit J un idéal de Galois d'injecteur M et H un groupe tel que M alors l'idéal de Galois I défini par H (et d'injecteur Gal(F)H) est calculable en rajoutant un seul polynôme R à l'idéal J. J'appelle ce polynôme un élément M-primitif de l'idéal de Galois I :
    J = I + [R]
    Ce polynôme R se déduit d'un facteur irréductible simple d'une H-résolvante M-relative ; R est l'évaluation de ce facteur en l'H-invariant M-relatif utilisé pour le calcul de la résolvante relative.
    Pour le calcul des résolvantes relatives, voir justement l'article MR1800031 avec P. Aubry. Pouvoir calculer une résolvante relative de degré l'indice de H dans M évite le calcule d'une résolvante absolue de degré l'indice de H dans le groupe symétrique S_n ; c'est-à-dire, n! lorsque H est le groupe identité (calcul de l'élement primitif v).

    This well-written paper deals with the determination of the Galois group of a given polynomial $f(X)\in K[X]$. Already Lagrange introduced resolvents to attack this problem. Several years ago Soicher, Foulkes, Stauduhar, McKay and others gave algorithms on how to compute Galois groups of polynomials of low degree $({\le}11)$ using resolvents.

    This computation goes as follows: Given an irreducible polynomial $f(X)\in K[X]$ of degree $n$, first determine all transitive subgroups of ${\germ S}_n$ (up to conjugacy). Next choose some $F\in Z[X_1,\cdots,X_n]$. Denote the natural action of an element $\sigma\in{\germ S}_n$ on $F$ by $^\sigma F$. Let ${\scr O}(F)=\{^\sigma F, \sigma\in{\germ S}_n\}$ be the orbit of $F$. Then ${\rm Res}(F)=\prod_{G\in{\scr O}(F)}(X-G)$ is called the resolvent polynomial of $F$. Let $\alpha_1,\cdots,\alpha_n$ be the roots of $f(X)$ (in a fixed algebraic closure of $K)$. Next factor ${\rm Res}(F,f)\coloneq{\rm Res}(F)(\alpha_1,\cdots,\alpha_n)$ over $K$. If ${\rm Res}(F,f)$ is separable, then the partition of the degree of ${\rm Res}(F,f)$ given by the degrees of the irreducible factors of ${\rm Res}(F,f)$ coincides with the partition of $\deg({\rm Res}(F))=\#({\scr O}(F))$ given by the lengths of the orbits obtained by the action of ${\rm Gal}(f)$ on ${\scr O}(F)$. It may happen that it is not possible to deduce the Galois group from the factorization of a single separable resolvent. For example, the factorization of the discriminant of $f(X)$ tells us only whether ${\rm Gal}(F)$ is contained in ${\germ A}_n$ or not. Therefore, we have to factor another resolvent. In the literature we find several tables of resolvents whose factorizations suffice to compute the Galois group of a polynomial of small degree.

    Let $K$ be a field of characteristic 0. The main theorem of the paper under review states that it is always possible to compute the Galois group of $f(X)$ from the factorization of a finite number of separable resolvents. The authors call it the chasing resolvents method.

    It runs as follows: A partition of an integer $m\inN$ is an $m$-tuple $(\alpha_1,\cdots,\alpha_m)\inN_0^m$ with $\sum_{j=1}^mj\alpha_j=m$. Let $U,V$ be subgroups of $G$ and set $e\coloneq[G\:U]$. Let ${\scr P}(V,U)=(\alpha_1,\cdots,\alpha_e)$ be the partition given by the orbit lengths of the action of $V$ on $G/U$ (i.e. $\alpha_j$ is the number of orbits of length $j)$. Now ${\scr P}(V,U)$ depends only on the conjugacy classes of $U$ and $V$ in $G$. Let ${\scr C}_1,\cdots,{\scr C}_s$ be the conjugacy classes of subgroups of $G$ (with a given ordering). Set $\overline\omega({\scr C}_i,{\scr C}_j)={\scr P}(V,U)$ where $V\in{\scr C}_i, U\in{\scr C}_j$. Then ${\scr P}_G=[\overline\omega({\scr C}_i,{\scr C}_j)]_{1\le i,j\le s}$ is called the partition matrix of $G$. Theorem 14 states that the rows of this matrix are distinct.

    Next we have to introduce the resolvents. Set ${\scr F}=K(X_1,\cdots,X_n), {\scr K}=K(\sigma_1,\cdots,\sigma_n)$, where $\sigma_i$ is the $i{\rm th}$ elementary symmetric polynomial in $X_1,\cdots,X_n$. Let $H<{\germ S}_n$. Let $\Psi$ be a polynomial in the integral closure ${\scr F}^H\cap K[\sigma_1,\cdots,\sigma_n]$ of ${\scr S}=K[\sigma_1,\cdots,\sigma_n]$ in the fix field ${\scr F}^H$ of $H$ which is a primitive element of the extension ${\scr F}/{\scr K}$. Then the minimal polynomial ${\scr L}_\Psi$ over ${\scr K}$ is called the (generic) Lagrange resolvent of $H$ associated to $\Psi$. Assume that ${\scr L}_{\Psi,f}={\scr L}_\Psi(\alpha_1,\cdots,\alpha_n)$ is separable, where $f(X)=\prod_{i=1}^n(X-\alpha_i)$. Then the partition given by the degrees of the irreducible factors of ${\scr L}_{\Psi,f}$ over $K$ coincides with ${\scr P}_{{\germ S}_n}(G,H)$, where $G={\rm Gal}(f)$. Since the rows of ${\scr P}_{{\germ S}_n}$ are distinct we are done. Hence the conjugacy classes in the columns play the role of test classes. The candidates for the Galois group can be found in the rows of the partition matrix.

    The authors illustrate their approach with an example. They compute ${\scr P}_{{\germ S}_4}$ and give Lagrange resolvents. From this example we see that we do not have to consider all resolvents. If $n=4$, then two resolvents instead of 11 suffice. Section 4 contains an extension of the chasing resolvents method to relative resolvents. This gives a way of throwing out multiple factors in the absolute resolvent.

    {For the entire collection see MR1457829 (97m:00022).}

    Reviewed by Martin Epkenhans

    Previous Item

    Next Item
    MR1448185 (98g:12005)
    Valibouze, Annick(F-PARIS6-C)
    Computation of the Galois groups of the resolvent factors for the direct and inverse Galois problems. (English. English summary)
    Applied algebra, algebraic algorithms and error-correcting codes (Paris, 1995), 456--468,
    Lecture Notes in Comput. Sci., 948,
    Springer, Berlin, 1995.
    12F10 (12F12)
    [Versions Préliminaires : rapport IBP-Litp 1994/58 et MAX 95-09 ]

    Let $k$ be a field of characteristic 0 and $f(x)$ a squarefree polynomial of degree $n$. Let $a_1,\cdots ,a_n$ be the roots of $f(x)$ in some extension field of $k$ and let $H$ be a subgroup of $S_n$ which acts in the obvious way on $k[x_1,\cdots ,x_n]$. Let $h[x_1,\cdots ,x_n]$ be a polynomial which is also a primitive element for $k(x_1,\cdots ,x_n)^H$ over $k(x_1,\cdots ,x_n)^{S_n}$. Let $\operatorname{id}=f_1,f_2,f_e$ be a set of representatives of the left cosets of $H$ in $S_n$ and let $h_i(x_1,\cdots ,x_n)=f_i(h(x_1,\cdots ,x_n))$. The resolvent of $f(x)$ by $h(x_1,\cdots ,x_n)$ is the univariate polynomial $(y-h_1(a_1,\cdots ,a_n))\cdots (y-h_e(a_1, \cdots ,a_n))$. The Galois group of the resolvents can be used to calculate the Galois group of the original polynomial $f(x)$. This paper presents results for calculating the Galois groups of resolvents for polynomials of low degree, particularly degrees 8 and 10.

    {For the entire collection see MR1448151 (97k:68003).}

    Reviewed by James K. Deveney

    Previous Item

    Next Item
    MR1230864 (94h:68101)
    Lazard, D.(F-PARIS6-C) ; Valibouze, A.(F-PARIS6-C)
    Computing subfields: reverse of the primitive element problem . (English. English summary)
    Computational algebraic geometry (Nice, 1992), 163--176,
    Progr. Math., 109,
    Birkhäuser Boston, Boston, MA, 1993.
    68Q40 (12Y05)
    [Version Préliminaire : Notes Informelles de Calcul Formel, Ecole Polytechnique]

    A new algorithm is presented to compute the subextensions of some effectively given algebraic field extension $K\to L$, for arbitrary base field $K$. Similarly, the algorithm can compute low degree subfields of low degree extensions of $L$, but in general the Galois group or Galois closure will not be computed. Some examples where $K$ is the field of rational numbers are given. No runtime analysis is given, and it is not clear how the efficiency of the algorithm compares to older algorithms for finding subfields. Such algorithms are useful for the simplification of algebraic numbers.

    {For the entire collection see MR1230853 (94b:13001).}

    Reviewed by A. K. Lenstra

    Previous Item

    Next Item
    MR1226584 (94g:05099)
    Valibouze, Annick(F-PARIS6-C)
    Sur l'arité des fonctions. (English. English summary) [On the arity of functions]
    European J. Combin. 14 (1993), no. 4, 359--372.
    05E05-- --(12E99 20B30)
    [Version Préliminaire : Notes Informelles de Calcul Formel, Ecole Polytechnique]

    The author gives an approach to the computation of resolvents of polynomials. Motivated by the process of extending $S\sb m$-symmetry to $S\sb n$-symmetry of polynomials in $n$ variables $(m\leq n)$ an analogue is considered for certain permutation subgroups of $S\sb n$. Applications have been implemented into the computer algebra system MACSYMA.

    Reviewed by Thomas Scharf

    Previous Item

    Next Item
    MR1034742 (91a:13013)
    Giusti, Marc(F-POLY); Lazard, Daniel(F-PARIS6-C); Valibouze, Annick(F-CNRS-L)
    Algebraic transformations of polynomial equations, symmetric polynomials and elimination.
    Symbolic and algebraic computation (Rome, 1988), 309--314,
    Lecture Notes in Comput. Sci., 358,
    Springer, Berlin, 1989.
    13P05 (14Q99)
    [Versions Préliminaires : ici et , deux Notes Informelles de Calcul Formel, Ecole Polytechnique]

    Consider the following problems: (i) Calculate the polynomial whose roots are the squares of a given polynomial. (ii) Given two polynomials $P$ and $Q$, calculate the polynomial whose roots are all the differences of a root of $P$ and a root of $Q$.

    These are examples of the problem of "transforming equations by a morphism". In this paper it is shown (after a technical definition of the concept) that "transforming polynomial equations by a morphism" is algorithmically equivalent to elementary elimination theory by resultants and also to making change of bases for symmetric polynomials. Implementations in computer algebra systems and efficiency are discussed.

    {For the entire collection see MR1034718 (90i:00005).}

    Reviewed by Ralf Fröberg

    Previous Item

    MR1033311 (90m:05006)
    Valibouze, Annick(F-PARIS6-C)
    Fonctions symétriques et changements de bases. (French. English summary) [Symmetric functions and changes of basis]
    EUROCAL '87 (Leipzig, 1987), 323--332,
    Lecture Notes in Comput. Sci., 378,
    Springer, Berlin, 1989.
    05-04 (12-04 68R05)
    [Version Préliminaire : Notes Informelles de Calcul Formel, Ecole Polytechnique]
    Commentaire d' Annick Valibouze

    Cet article est référencé dans celui de T. Hagedorn pour la résolution par radicaux des équations de degré 6 : @article {MR1793923, AUTHOR = {Hagedorn, Thomas R.},
    TITLE = {General formulas for solving solvable sextic equations},
    JOURNAL = {J. Algebra}, VOLUME = {233}, YEAR = {2000}, NUMBER = {2}, PAGES = {704--757} }

    This paper describes two change-of-basis algorithms: the first one expresses a symmetric polyno²mial in terms of elementary symmetric polynomials, the second one in terms of power sums. They proceed by using a decomposition formula for the product of two monomial polynomials, which is triangular with respect to two appropriate total orders on the partitions. The computations are made formally from a representative for the monomial polynomials; this avoids having to develop the monomial polynomials and saves a lot of time.

    {For the entire collection see MR1033288 (90i:68007).}

    Reviewed by Laurent Habsieger

    Previous Item


    American Mathematical Society American Mathematical Society
    201 Charles Street
    Providence, RI 02904-6248 USA
    © Copyright 2006, American Mathematical Society
    Privacy Statement